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We present two methods for the evaluation of Airy functions of com- 
plex argument. The first method is accurate to any desired precision but 
is slow and unsuitable for fixed-precision languages, The second 
method is accurate to double precision (12 digits) and is suitable for 
programming in a fixed-precision language such as FORTRAN, The 
first method uses the symbolic manipulation language Maple to 
evaluate either the Taylor series expansion or an asymptotic expansion 
of each function. The second method extends an idea of J. C. P. Miller 
to the complex plane. It uses the first method to obtain a grid of points 
in the complex plane where the functions are known to high precision 
and then uses Taylor series from these base points. The resulting 
algorithm is accurate and efficient. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

In this paper we present two methods for the numerical 
evaluation of the Airy functions with complex arguments; 
these are the solutions of Airy’s equation 

y”-zy=o. (1.1) 

The calculation of the Airy functions with real arguments 
has been carried out by many authors; a good description of 
the early literature can be found in Miller [ 11. Recently a 
differential equation method has been applied to the 
numerical evaluation of the Airy, Pearcy, and swallowtail 
canonical integrals by Connor et al. [2], again with real 
arguments. Schulten et al. [ 33 considered the complex Airy 
functions. They based their algorithm mainly on numerical 
evaluation of Stieltjes-type integral representations of the 
functions using generalized Gaussian quadrature. Near 
the origin of the complex plane they used a power series 
expansion. 

The present paper differs from the paper by Schulten et al. 
[3] in that both methods presented here are essentially sim- 
pler. We demonstrate in this paper that the use of modern 
computer algebra languages allows us to overcome the 
limitations that caused these simpler methods to be passed 
over previously in favour of more complicated techniques. 

The Airy functions appear in the solution of several 
problems in fluid mechanics, geophysics, and atomic 
physics. We now briefly discuss some of these. More details 
can be found in the cited references. 

For plane Couette flow it can be shown (Drazin and Reid 
Cd]) that the Orr-Sommerfeld equation for linear stability 
has the form 

(E3(D2- M2) - q)(D2- c(‘)qs = 0 

with boundary conditions 

(1.2) 

$=Dq4=0 at q=-l-c,q=l-C. 

Here D stands for d/dq and E = (zctR) -‘j3. This can be 
interpreted as an eigenvalue problem for the growth factor 
c for given values of the Reynolds number R and the 
wavelength LX. 

If we let 

and 

z = E2’3(c2 + E-21) 

we see that Eq. (1.2) reduces to the Airy equation ( 1.1). 
Thus it is clear that the four linearly independent solutions 
for $ can be expressed in terms of integrals containing the 
two Airy functions. Recently a similar approach has been 
used by Hooper and Boyd [S, 61 who developed similar 
equations in their studies of shear flow instability. 

In magnetotelluric data inversion one tries to deduce the 
conductivity structure of the earth from the measurements 
of the impedance function. For one-dimensional problems it 
can be shown that under reasonable assumptions the 
impedance c(k, z) is given by 

(D2 - k20(z)) c(k, z) = 0, (1.3) 

where D = d/dz and k is the wavenumber of the incoming 

OC21-9991/92 S3.00 
Copyright (I!$ 1992 by Academic Press, Inc. 
All rights of reproduction in any form rewved. 

106 



NUMERICAL EVALUATION OF AIRY FUNCTIONS 107 

signal and a(z) is the unknown conductivity profile. The 
boundary conditions on c(k, z) are 

DC=-1 at z=O,c+Oasz-,oo. 

The unknown conductivity profile a(z) is to be determined 
when the data c(k, 0) is measured for different values of k. 
For more details, see, e.g., Coen et al. [7]. 

Usually as part of the inversion procedure the direct 
problem with a(z) known must be solved. If a layered model 
of the earth is used, c(z) is usually either constant or 
proportional to z. In the latter case Eq. (1.3) becomes the 
Airy equation. This approach has been used, for example, 
by Kao and Rankin [8] in a study of a three-layer earth. 

The numerical evaluation of the Airy functions is also 
required in semi-classical descriptions of atom-atom colli- 
sion. Bieniek [9] discusses uniform JWKB amplitudes and 
phases for turning-point problems in this field. 

The outline of the paper is as follows. In the next section 
we summarize briefly some of the well-known properties of 
the Airy functions that we require in our analysis. In Sec- 
tion 3 we present our first method. It consists of using the 
symbolic manipulation language Maple [lo] to evaluate 
the Taylor series representations of the Airy functions for 
complex 2 to the required accuracy. For large Izl we use 
asymptotic formulae. While these algorithms are computa- 
tionally expensive the programs are fairly simple. 
Section 4 we develop a fixed-precision algorithm 
FORTRAN, based on the methods of Miller [ 11, 

In 
in 

2. PROPERTIES OF AIRY FUNCTIONS 

We here summarize the properties of the Airy functions 
which we use below. We use the notation of Olver [ 111. 
Airy’s differential equation is 

y”-zy=o. (2.1) 

Any solution y(z) of (2.1) is entire and has the symmetry 
that y(wz) and y(Wz) are also solutions, where 
o = exp(2nt/3). Further, 

y(z) + wy(oz) + cQ(Oz) = 0. (2.2) 

Two linearly independent solutions which are real when z is 
real are Ai and Bi(z), which satisfy the initial conditions 
(Olver [ll]) 

_ 3 - 113 Aj(())x!Y - 
w3)’ 

Ai’ = r( *,3) 

and 

We note at this point that, since Ai and Ai(tiz) are solu- 
tions of (2.1), they are necessarily linearly dependent on 
Ai and Bi(z). Explicitly (Abramowitz and Stegun [12], 
we have 

Ai = $e’“‘3{Ai(z) - tBi(z)} (2.3) 

and 

Ai(tiz) = +eC’“‘3(Ai(z) + lBi(z)}. (2.4) 

The connection formulae (2.2)-(2.4) are used extensively in 
the sections to follow. We will also require the following two 
asymptotic series for Ai (Olver [ 111): 

Ai(z)-inp’!2z-1~4e-t 

2 s~oF~Y~ 

valid when 1 Arg zI < rc, (2.5) 

where t = fz3’2 in principal value, and 

(2.6) 

valid when IArg zI <2x/3, where u, = [(2s + 1)(2s + 3). . . 
(6s - 1)]/(216)” s!,which together suffice to cover the whole 
plane. Asymptotic formulae for Bi are also available but are 
not used in this paper. 

The Taylor series for Ai and Bi(z) about zero may be 
written as (Abramowitz and Stegun [ 121) 

Ai = Ai( + k’(O) g(z) (2.7) 

and 

W(z) = Bi(O)f(z) + Bi’(0) g(z), (2.8) 

where 

and 

g(z)=z+ f 
3”r(n + 2/3) 

n=l r(2/3)(3n+ l)! 
z3n + , 

For large positive z,f(z) and g(z) both grow exponentially, 
but Ai(z) decavs exoonentiallv. We shall thus have a 

581!99/1-8 
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so 

FIG. 1. Regions in which Ai( Ai( or Ai are “recessive” or 
exponentially subdominant. 

cancellation problem to deal with in the calculation of Ai 
fromf(z) and g(z). 

We note at this point that the solutions Ai( Ai(tiz), and 
Ai can be recessive, where a recessive solution is one 
that decays exponentially, as IzI + co, along a ray from the 
origin relative to the other linearly independent solutions, 
i.e., 

Ai is recessive in the region 

So = {z I IArg zl < n/3 >, 

Ai(tiz) is recessive in the region 
S,={zI7~/3<Argz<n), 

Ai is recessive in the region 
S-,= {z 1 -rc<Argz< -7c/3). 

These regions are illustrated in Fig. 1. 
B(z) is not recessive in any Si, while Ai is recessive only 

in S,. (Olver [ 111). Thus, in view of the linear dependencies 
(2.3) and (2.4), the mathematically linearly independent 
Ai and Bi(z) are numerically linearly dependent for (even 
moderately) large values of Izl in the regions S, and S,. 
Therefore linearly independent solutions that are numeri- 
cally satisfactory are in So the pair {Ai( B(z)}, in S, 
the pair {Ai( Ai(w and in S-, the pair {Ai( 
Ai( (Olver [ 111). 

3. FIRST METHOD OF EVALUATION 

Modern symbolic manipulation languages (e.g., Maple 
[lo]) have the ability to calculate with exact rationals of 
very large size, or to calculate with floating-point numbers 

of very high precision, limited only by the memory of the 
machine used. Either of these two facilities enables us to use 
a very simple brute-force approach to the evaluation of the 
Airy functions. This approach, while expensive in terms of 
computer time, is very simple to implement and enables us 
to get accurate benchmarks from which we may derive a 
more efficient fixed-precision subroutine. Indeed, for some 
purposes, the symbolic manipulation implementation is 
sufficient in itself. 

3.1. Summation of Taylor Seriesfor Small and Moderate JzI 

Any solution y(z) of (2.1) can be written y(z) = C,“=, Y,, 
where the Y, are determined by the recurrence relation 

Y Z3 
Yk = k(;-: * ) 9 k 2 3, 

with appropriate starting values. 
In particular the solutions y = f(z) and y = g(z) have 

initial conditions 

and 

F,,= 1, F, = 0, F, = 0 (3.2) 

G,=O, G1=z, G2=0. (3.3) 

So f(z) = C,“=, Fk and g(z) = C,“=, G,, where Fk and Gk 
also obey (3.1). Note that IG, 1 6 IzJ I Fk I for all k. We use 
Maple to evaluate these series. 

Note that only every third term in each series is nonzero: 
F3k in the series forf, and GXk+, in the series for g. Thus 

F 
3k 

= 3kl-(k + l/3) z3k 
r( 1/3)(3k)! 

and 

G 
3kI-(k + 213) z3k+ ’ 

3k+‘= r(2/3)(3k+ l)! 

If we give z to our Maple program as an exact rational 
number, possibly also with some algebraic or transcenden- 
tal constant (e.g., a, 7c, r(1/3)), we get the exact sum of 
the truncated power series, which we may then convert to 
decimal form (at which point the cancellation problem 
manifests itself, so we must ensure that enough decimals are 
taken here to obviate the problem). If we use the very high 
precision capability from the start (say with 50 or 60 digits) 
the program is somewhat faster than with exact rational 
arithmetic and just as accurate. We need only take enough 
terms in the Taylor series to ensure that the truncation error 
is small enough to give a good relative error (or absolute 
error if we are near a zero). To facilitate the choice of the 



NUMERICAL EVALUATION OF AIRY FUNCTIONS 109 

number of terms, an analysis of the Taylor series was done 
to find a bound on the truncation error. 

To bound the truncation error we start with the 
recurrence relation (3.1) and the definition of the Taylor 
series sum for either S =f(x) or S = g(z): 

An exactly similar analysis gives 

(W) + I4 Bi’(O)) IF,, 1 I 
(1 -rn+l) ISi(z)l 

(3.6) 

-(W) + I.4 Bi’(O)) IF,, I I > 

s= 5 Y,= i r,+ f Y,. (3.4) 
k=O k=O k=n+l 

If we take n so Y, # 0, then by the construction of the series 
for for g, Y, + , = Y, + 2 = 0. Therefore, 

A Maple routine has been written to calculate Ai( Ai’( 
E(z), and B’(z) by Taylor series and to return error 
estimates based on the above formulae. Note that the idea 
of numerical linear dependence plays a smaller role in the 
very high precision context: one need only take enough 
figures and the mathematical linear independence is evident. 

+ Y,+3+ Y,,+(j+ Y,+$,+ “. 3.2. Summation of Asymptotic Series for Large IzI 

Z6 

+(n+9)(n+8)(n+6)(n+5)+ ... > ’ 

Note that for k > 6, we have (n + k)(n + k - 1) > (n + 5)‘, 
which can be used in the equation above to show that the 
truncation error T = Y, + 3 + Y,, + 6 + Y, + 9 + . . . satisfies 

which converges if F,, , = Iz’l/(n + 5)2 < 1. 
Then ITIdIY,+31/(1-~n+1 ) because the series giving the 
upper bound is geometric. 

We then find that 

IdAi( = IAi(z) -iii(z)\ 

< (Ai(0) - IzI Ai'(O)) fJ-+ if rn+,<l, 
rr+ I 

where we change notation slightly so that 

r n+l=IZ/3/(3n+5)2. 

This gives us a relative error bound, if further 
Iai( > IdAi( (and hence IAi( > 0), of 

I~‘wz)l -< (Ai(O) - Izl AW)M~,+ I I 
INz)l 

( 
(1 -r,+,) 14 

(3.5) 

- (Ai(O) - Izl Ai’( IF,, I I > 

and everything on the right-hand side is easily computable. 

It is clear that the cost of computing Ai to a given 
precision increases with increasing IzI. At some point we are 
better off using the asymptotic formulae (2.5) and (2.6) 
together with the connection formulae (2.3) or (2.4) to 
calculate the desired quantities. It remains to choose a value 
of lzl to switch from the Taylor series to the asymptotic 
series. Call this value R. 

The choice of the change-over radius R depends on the 
precision desired. Olver [ 111 gives sharp truncation error 
bounds for the asymptotic formulae for (2.5) and (2.6) 
(presented in the next section) and using these we find that 
for a relative error of less than lo-l6 we cannot use the 
asymptotic formulae if Iz( < 10. For other precisions Table I 
exhibits our results. 

Thus, e.g., for double precision we would use the Taylor 
series with (at most) 52 nonzero terms inside Iz( 6 10, while 
in Izl > 10 twenty-three terms in the asymptotic series 
(either (2.5) or (2.6) depending on Arg z) gives at least the 
same accuracy. For much larger 1~1, fewer asymptotic terms 
are required; for lzl much smaller than 10, fewer Taylor 
terms are required to reach this precision. For IzI < 10, the 
asymptotic series cannot achieve the desired accuracy. 

To obtain truncation error bounds for the asymptotic 
series we use the asymptotic formula (2.5) in the range 
IArg zI <2rc/3, but not in IArg .zI < rr since the accuracy 
degrades near the Stokes line on the negative real axis. 
Olver [ 111 gives the error bound for 

TABLE I 

Precision R 
Nonzero Taylor 
terms in (21 <R 

Asymptotic 
terms IzI 3 R 

19 12 
52 23 

10-23 12 58 50 
10-33 15 78 65 
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as and Bi’(z), we may investigate more efficient, fixed-preci- 

Itj <2.X(n).U”.exp 
sion algorithms. Here we develop a method, also based on 

151” 
&uw 9 . 

I 
(3 7) Taylor series, for efficient evaluation of the Airy functions. 

We note that the main numerical difficulty in calculating Ai 

where 
is the catastrophic cancellation along the real axis and, to a 
lesser extent, along the rays Arg(z) = *n/3, which also 
gives difficulty in the computation of Bi. 

We first briefly show the nature of the problem. Consider 
the Taylor series for y(z) based at z = c. Then 

y(z)= i y,+ f Yk, 

grows only slowly with n. k=O k=n+l 

If n = 25 and JzI > 10, we have 

1q1<12.75+15$ 

where the second sum may be made as (mathematically) 
small as we please by taking n large enough. However, in 
fixed precision we do not actually calculate y, = c;; Yk, but 
rather 

or < 15 times the modulus of the first neglected term. We n 

use the asymptotic formula (2.6) in the remaining ranges in = 1 yk(l +PkU), 

27~13 d Arg z d 7c and - rc < Arg z < -2~13, and a similar 
k=O 

result obtains where u is the machine epsilon, defined as the smallest 
machine representable number such that, when stored, 1 + u 

~i( -z) = n-i/2z-‘1/4 {cos(c-;) is different from 1, and where the Pk are growth factors due 
to propagation of roundoff errors in the recurrence relation 
(Gautschi [ 141). We have 

IY-.FnI = IY-YYn+Yn-PnI 

and both vi and q2 satisfy 

Ml”+2 
-. Iylil d2xW+2) It12n+2 exp (3.8) 

This gives us practical truncation error bounds for the com- 
where the second term on the right is a bound for the 

putation of the asymptotic series for Ai( Note that Bi(z) 
roundoff error. Therefore, if P,, = maxO < k < n Ipk 1, the . . 

may be calculated in IzI > R by using one of (2.3) or (2.4) 
relative roundoff errOr 

and calculating Ai and either Ai or Ai by the 
asymptotic formulae given. Similar formulae are used for 
the evaluation of Ai’( 

Both the Taylor-series method and the asymptotic-series 
method were programmed in Maple. For a given value of z, satisfies 

the program selects the appropriate strategy and then 
returns Ai and Bi and bounds on the error based on one of 
the formula,e derived above. 

cc yn--pn 

I I Y 

C<d& Irki 
\ 

IYI 
if y#O 

4. EVALUATION IN FIXED- and we see that if I yl is small and C I Yk 1 is large, C could 
PRECISION WITH FORTRAN be large. This occurs on the real axis for y = Ai, when C I Y, I 

is like Bi and grows exponentially and occurs for both Ai 
Once we have a reliable method (however expensive in and Bi along IArg zI = n/3. When y(z) is near a zero, then 

computing time) for the computation of Ai( Ai’( W(z), we also have difficulty unless C I Y, I is small, which is 
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usually impossible. The problem is unavoidable in this case 
and an absolute tolerance must be used here instead. 

A similar analysis for the asymptotic series gives the 
following bound for the cancellation error: 

for /Arg zI <F, (4.2) 

and 

13 . (Icos(t: - (71/4))1 x=0 (%/1512”) \ 

cb 
L + M-(44))l Cfco (~2,+l/lt12”+1))l u 

( 
Icos(( - (n/4)) c:=, (%lt2”) 

+ sin(t - (71/4)) CILo (uzs+ ,/t’“+ ‘)I > 

for 

(4.3) 

These problems are usually cured by taking n small, so 
that C / Yk 1 is not too large. This “low-order” approach 
means that smaller mesh sizes are necessary in order to keep 
the truncation error small. 

Note that along Arg z = 7113, we do not have exponential 
growth in either Ai or Bi, but rather oscillation. Thus we 
must use the “low-order” idea along this ray. However, 
because I yl decays only algebraically as Iz/ + cc along this 
ray, the cancellation problem is not as severe to begin with. 

However, “high-order” is desirable for efficiency, and it is To account properly for the numerical difficulties caused 
still possible if we choose our expansion point to make 1.~1 by exponential decay, we first decompose the wedge 
relatively large, not small. This means that we must expand {z I Arg z < rr, IzI < R} into triangles and near-triangles. 
about the right end point on a real interval for a calculation Figure 2a shows the decomposition used for the double 
of Ai; calculations based on the left end point are stable for precision calculations. When evaluating Ai or Bi(z), we 
the calculation of Bi. The basic idea, due to Miller [l] and first determine which triangle contains z. Within a triangle 
used by him in the computation of Ai for real x, is to pick we follow the strategy illustrated in Fig. 2b. To calculate 
a base point that allows the desired component of the Ai( we use the Taylor expansion about the lower right 
general solution to the ODE to grow exponentially. corner, so that we are calculating Ai in a direction 

Rez 

4.1. Evaluation Using a Triangular Grid 

Thus, since Ai decays as we move towards +cc in the 
sector IArg zI < 7~13, we must expand about a base point 
which is closer to +co than z. Then Ai will be exponen- 
tially large at the desired point, compared with the value of 
Ai at the base point. This makes the factor I yl in the error 
bound for C large, and thus the cancellation error is small. 

This proves successful on the real axis for Ai, though not 
completely so because the signs in the Taylor series still 
alternate like + + - + + - . . . and the cancellation 
problem still exists, albeit in a much reduced form. The 
authors are not aware of any other work in which this idea 
is applied in the complex plane, but the idea also works in 
any region where Ai and Bi both exhibit exponential 
behaviour. Luckily, in the sector IArg zI < 7r/3 they both do 
so, and from this sector we can stably evaluate them 
anywhere in the complex plane by using the connection 
formulae. However, it is not so clear just where to put the 
base points in the complex plane. We have implemented the 
scheme below. 

FIG. 2. a. Mesh decomposition of the region IzI < 10, 0 < Arg z Q 43 for the evaluation of the Airy functions in complex double precision. b. Base 
points used for the calculation of Airy functions at z by Taylor series. The point A is used for the Taylor series for Ai, and the point B for Bi. 
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leading to exponential growth of the desired component. 
Likewise, to calculate B(z) we use the Taylor expansion 
about the upper left point, again so that we calculate in a 
direction giving exponential growth of the desired compo- 
nent. 

4.2. Truncation Error Analysis for the Modified Taylor 
Series Method 

One advantage of the Taylor series is that we can obtain 
a useful (for diagnostic purposes) bound on the truncation 
error. We saw earlier a bound on the cancellation error for 
the Taylor series. After the truncation error bound for the 
Taylor series is given, we shall derive similar results for the 
cancellation error in the asymptotic series. 

We compute y(z) = y(c + z - c) = y(c + h) via 

y= y, + T, = i y’k’(C) hk + f y’k’(Cfhk 
k=o k! k=n+l k! 

=iA,+ f A,, 
k=O k=n+l 

where Ak = ( yCk’( c)/k! ) hk can be found using the recurrence 
relation 

h2 
Ak=k(k-l) 

-(c.Ak-2+Ak-3.h), ka3 (4.4) 

and A,, A, are determined by initial conditions and 
A, = ch2Ao/2. 

Now T,, = C,“, , A, Satisfies (T,, 1 d c,F+ I IA, 1 (which 
also converges), and 

IhI2 
lAkl ‘k(k- 1) ~ tici IAk-21 + Ihl h-31) 

IhI2 

yn+ 1)n -((ICI b&--21 + Ihi iAk-,I)> k>n+l 

so if 

ICI IhI2 ak=-ak-2+--$$akp3 
n(n + 1) 

and 

an-2= 14-21, a,-I=IA,-II, a,= IAnI 

then I Ak 1 < ak for k > n + 1 by induction. Further, 

ak=wlk +bp2k+%hk9 

where pi, p2, and p3 are the roots of 

Putting p’ . Ihl .E = p, where .s3 = l/n(n + l), 

(p’)3= l+& ICI p’ 

and this cubic is obviously numerically stable to solve for 
small E. Then 

where p = max(Ip, (, Ip2 (, (p3 I), and instead of finding cI, fi, 
y, we solve the more stable linear system 

(which is a system of Vandermonde type). Finally, 

IT,1 d f ak<(lup;-21 + Ifip;‘-21 
nt I 

+ Iyp;-21)L 
1-P 

if p-cl 

is our computable bound for the truncation error. This 
bound is clearly useful only for diagnosis and identification 
of trouble spots, and for constructing the FORTRAN 
program. For example, we can use this to decide in advance 
how many terms are necessary in each triangle to achieve 
the desired accuracy. 

4.3. Stability of the Recurrence Relations 

The error amplification factors pn in Eq. (4.1) come from 
the propagation of roundoff error through the recurrence 
relation (4.4). A strict mathematical analysis of this error is 
beyond the scope of this paper, because (4.4) is a four-term 
relation. Existing analyses apply only to the three-term case. 
Olver [13] examines thoroughly the case of the general 
linear three term recurrence relation. However, to be conli- 
dent that our results are correct we must know at least if our 
recurrence relation is stable when evaluated in the forward 
direction. To this end it is not enough to note that, because 
of the factorials present in the Taylor series coefficients and 
the fact that the Taylor series ultimately converges for all h, 
the recurrence relation is ultimately stable: we need to know 
also that the relative errors made early in the sequence are 
not large, because these contribute to the cancellation error 
(cf. Eq. (4.1)). We note that the ultimate behaviour of the 
Taylor series coefficients implies that the solutions to the 
recurrence relation that we are interested in are not “mini- 
mal” (Olver [ 131, Gautschi [ 14 J, Wimp [ 151) by which is 
meant that the other linearly independent solutions of the 
recurrence relation dominate the minimal solution as n goes 
to infinity, leading to amplification of the roundoff error. If 
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1.2. 

1 l *. 
0.8. l l 

Iv(n)\ 0.6. ’ l . 

0.4. l . 

0.2. l 

. 

. 

l . 

o* : : : : : : : 
? .-.-.+ 

0 2 4 6 8 10 12 14 16 18 20 

Taylor Term Index n 

FIG. 3. The magnitude of the complex Taylor series terms for a Taylor 
stepsize of magnitude 4, which, for emphasis, is larger than any actually 
used by the program. 

our Taylor series coefficients had in fact been minimal, the 
special technique of backward recursion, also due to Miller 
[ 161, would have to be applied. It is of interest to note that 
the basic idea behind our second algorithm for the evalua- 
tion of the Airy functions is precisely the same idea as that 
used to handle instability of recurrence relations, only we 
are using it (as indeed Miller [l] did also, in the real case) 
to evaluate a function on the complex plane instead of the 
integers. 

In the case c = 0, the four-term recurrence relation (4.4) 
can be replaced by a two-term relation, and a stability 
analysis like that of Gautschi [17] can be carried out 
explicitly, with the conclusion that the relation is neutrally 
stable. More simply, we may note that the two-term relation 
requires only multiplication, and hence is stable. If, 
however, c is nonzero, as it is for our fixed-precision 
method, the recurrence relation becomes a four-term one, 
and, though it is possible in theory to obtain precise infor- 
mation on the three solutions of (4.4), by, for example, the 
matrix methods mentioned in Olver [ 131 or Wimp [ 151, 
we note that the solution depends nonlinearly on the expan- 
sion point c, so we do not expect useful information from 
such an approach. Instead, numerical experiments have 
been carried out to investigate the relative error in the 
Taylor terms y,,(c) that result from perturbations in the 
initial conditions and in the point of expansion, c. Typical 

2 
1.8 
1 .6 
1 .4 

0 

1.2 
Log of Error , 

results of these experiments are presented in Fig. 3 and 4. 
The propagation of errors in the recurrence relation for y, 
depends in part on the magnitudes 1 y, 1. If these terms are 
large, initial errors are amplified by these factors. We see in 
Fig. 3 the magnitudes of a typical sequence of Taylor series 
terms, with magnitudes at most O(l), which cause no dif- 
ficulty. Of course, for large h the height of the “hump” 
increases, and eventually errors could become serious. 
For the values of h used by our program (everywhere 
(hi <maximum triangle diameter -2.5). This is not a 
problem. In the graph presented, jhl = 4 which is larger than 
that used in the program, for emphasis. In Fig. 4, we observe 
the error amplification factors due to a perturbation in c, the 
base point about which we are Taylor expanding, for the 
worst case observed. The only values of c that give any 
trouble lie on or near the ray Arg(z) = 7r/3, where we see 
that perturbations in c may give relative errors in the series 
coefficients on the order of 100 times the initial perturba- 
tion. This large relative error is due to the fact that the series 
coefficients themselves oscillate and some terms become 
small. We note that it is the relative error that is significant, 
and if the stepsize is large, the cancellation error introduced 
might also be large. However, the worst such examples 
observed had amplification factors that were no larger than 
100, so we expect to lose no more than two digits of 
accuracy due to the amplification of error in the recurrence 
relation. 

Thus, practically, the recurrence relation is stable, We 
note that we have not explored any possible interaction 
effects between perturbations of c and ongoing roundoff 
errors, so this investigation cannot be regarded as complete. 
No further experiments seem justified, however, as no 
evidence of pathology was seen. 

4.4. Asymptotic Series in Fixed-Precision 

We had no difficulty implementing the asymptotic 
formulae (2.5) and (2.6), using the symmetry relations 
(2.3) and (2.4) to cover the entire region Jz/ > IO. Similar 
accuracy was obtained. 

0 10 20 30 40 50 60 70 80 
Taylor Term Index 

FIG. 4. The relative error amplication log,,,{ 10’ ((y, - jn)/yn) } caused by a perturbation of size 10e3 in the value of “c” (cf. Eq. (4.4)). 
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TABLE II ACKNOWLEDGMENTS 

Zeros of Bi(z) in Upper Half Plane 

Real Part 

0.97754488673162E + 00 
0.18967750138953E + 01 
0.26331577393549E + 01 
0.32785312361567E + 01 
0.38658527317333E + 01 
0.44116118748093E + 01 
0.49255293538614E + 01 
0.54139368088077E + 01 
0.58812467539812E + 01 
0.633068856706318 +Ol 
0.676471521144958 + 01 
0.71852451085166E + 01 
0.75938143918964E + 01 

Imaginary Part 

0.21412907060387E + 01 
0.36272917643589E + 01 
0.48554681799798E + 01 
0.59445042811791E+01 
0.694169220958218 + 01 
0.78718396594866E + 01 
0.87499825412567E + 01 
0.95860969005548E + 01 
0.103872273903048 + 02 
0.11158581226760E+02 
O.l1904144485949E+02 
0.12627054083962E + 02 
0.13329834712851E +02 
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